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Abstract—Recent developments in mesh-free plasma modelling
using parallel tree codes are described, covering algorithmic and
performance issues, and how to apply this technique to multi-
dimensional electrostatic plasma problems. Examples are given
of simulations of ion acceleration by high intensity lasers, as well
as more recent applications of this technique to vortex-fluids and
edge-plasma modelling in tokamaks.

I. INTRODUCTION

Nearly all kinetic plasma modelling over the past four
decades has utilized a spatial mesh to mediate the interplay
between plasma particles and their associated electric and
magnetic fields. These models have proved highly successful,
as exemplified by the now routine use of three-dimensional,
electromagnetic particle-in-cell (PIC) codes for modelling
nonlinear wave-particle phenomena in all areas of plasma
physics. Despite this success, the presence of a grid ultimately
places restrictions on the spatial resolution, dynamic range or
geometry which can be handled by PIC codes, especially in
three dimensions. These difficulties can be tackled to some
extent with adaptive mesh refinement, but usually at the
expense of reduced parallelism. Recently a versatile, mesh-
free plasma simulation paradigm has been introduced which
overcomes some of these limitations for certain classes of
problem. Inspired by the N-body tree algorithms originally
conceived to speed up gravitational problems in astrophysics,
this approach reverts to first principles by performing direct
pair-wise summation of forces acting on the particles and
subsequently integrating their trajectories in a Lagrangian,
’molecular dynamics’ fashion.

Following the first application of this technique to strongly
coupled plasmas [1], tree codes have since been used to model
atomic clusters [2], two-dimensional bounded plasmas [3] and
electrostatic sheaths in tokamaks [4]. Despite their reduced
physics content compared to fully electromagnetic particle-
in-cell codes, mesh-free tree codes already offer completely
new possibilities in plasma simulation, particularly where
collisions are important; for modelling complex geometries
including strong density gradients; or for mass-limited systems
in which artificial boundaries would normally compromise
the simulation’s validity (for example atomic clusters). In

the Plasma Simulation Laboratory at Jülich Supercomputing
Centre we are developing this technique further to included
self-generated magnetic fields, and have been using a parallel
electrostatic tree code to study three-dimensional phenomena
in laser and particle beam interactions with various types of
complex plasma target [5]–[8].

Exploiting this algorithm on modern parallel computer ar-
chitectures is a significant challenge in computational science:
our current electrostatic version (PEPC-E) is currently capable
of performing dynamic simulations with 256 million particles
on 8192 cores of the new JSC BlueGene/P system In this
paper a brief introduction to the technique of mesh-free plasma
simulation based on heirarchical tree codes is given, pointing
out its merits and potential pitfalls. Recent applications in the
areas of laser-plasma interactions and magnetic fusion will
be presented. Finally, prospects for future magnetoinductive,
radiation free simulations including slowly varying electric and
magnetic fields will also be addressed.

II. PLASMA TREE CODES: THE BASICS

Algorithmically speaking, a plasma tree code is no differ-
ent to the many Newtonian gravity N -body solvers used in
astrophysics, which are nearly all based on some for of the
Barnes-Hut hierarchical tree algorithm [9].

Briefly summarized: the electrostatic force-sum on each
particle is computed by systematically replacing more dis-
tant charges by multipole expansions of charge groups, thus
reducing the standard O(N2) direct sum to an O(N logN)
complexity at the price of a small, controllable error [10]. For
most plasma physics applications there is no need to compute
potentials and forces to higher accuracy than the error incurred
by time-integration, which can be anywhere between 10−4

for a high-order Runge-Kutta scheme, to around 1% for the
simple 2nd-order Leap-Frog method. Compared to most PIC
codes, which neglect short-range contributions completely, this
type of force-summation is more expensive, but orders of
magnitude more accurate.

Domain decomposition: At first sight, the hierarchical data
structure required in a tree code to manage the multipole infor-
mation would seem to rule out parallelism altogether. In fact,



several schemes for parallel tree codes have been proposed and
implemented, including virtual shared-memory versions [11],
and distributed memory schemes using geometrical domain
decomposition methods [12], [13]. The scheme adopted here
follows the one devised by Salmon and Warren [14], [15], who
practically reinvented the BH algorithm by scrapping memory
pointers for bookkeeping in favour of a set of universal binary
keys to represent particle and tree-node coordinates alike.

The basic idea is to convert the coordinate triple of each
particle into a single, unique 64-bit integer key. The keys do
not replace the coordinates, but as we shall see, provide a
natural and rapid means of sorting the particles and building
up the tree structure around them. Given its key and owner,
locating any node in the tree is reduced to an O(1) operation.

In the present code, PEPC, the keys are constructed from
the binary interleave operation:

k = p+
nb−1∑
j=0

8j(4 × bit(iz, j) + 2 × bit(iy, j) +bit(ix, j))

The function bit() selects the jth bit of the integer coordi-
nate component (ix, iy, iz), which are computed from:

ix = x/s, etc.,

where
s = L/2nlevels

and L is the simulation box length; nlevels the maximum
refinement level. The latter obviously depends on the machine
precision, and for a 64-bit machine, we can have 21 bits per
coordinate (or nlevels=20) plus a place-holder bit:

p = 263.

This procedure yields a space-filling curve following the
so-called Morton or Z-ordering, a 2-dimensional example of
which is shown in Fig. 1 below.

Fig. 1. 2-dimensional Morton (Z-) ordering of 200 simulation particles,
equally shared among 4 processor domains.

The simulation particles are then sorted according to the
list of binary keys generated above. The fully parallel sort
currently implemented is a recursive adaptation of the PSRS

(parallel sort by regular sampling) algorithm originally pro-
posed in Ref. [16]. Since the distribution of keys depends
sensitively on the geometry of the system simulated—that is,
whether the particles are initially arranged in a cube, sphere
or more complex object—regular sampling tends to produce
highly imbalanced particle numbers across the processors. To
compensate this effect, we instead use weighted sampling,
which allows for the actual distribution of keys along the
whole space-filling curve (Fig. 1).

A big advantage of binary coordinate ordering over standard
addressing techniques in tree codes is that the hierarchical
structure is recovered automatically. Keys of parent and neigh-
bour cells are obtained by simple bit operations, so that the
average access-time for any particle or node in the tree is O(1)
instead of the usual O(logN). The obvious drawback is that
the number of possible keys, 263 ' 1019 on a 64-bit machine,
vastly exceeds the memory available, typically ∼ 105 − 106

locations per processor. This mismatch is resolved by using
a hashing function to map the key onto a physical address in
memory, for example:

address = k AND (2h − 1), (1)

where h is the number of bits available for the address. This
address then acts as a pointer to the particle or multipole
properties. In case two or more keys give the same address (a
’collision’), a linked-list is constructed to resolve it. Clearly
a high occurence of collisions will ultimately degrade perfor-
mance; however, as Warren & Salmon pointed out [15], the
distribution of particles and nodes between many processors
with their own address-spaces helps to reduce their number to
a negligible level.

Domain decomposition is then reduced to the almost trivial
task of cutting out equal portions of the sorted list and
allocating these to the processors. An decomposition example
for 200 particles divided amoung 4 processors is also seen
in Fig. 1. Note that with this scheme, load balancing can be
easily introduced by biasing the key-list segments according
to the number of interactions computed for each particle in
the force summation during the previous iteration.

Construction of local trees: Once a set of particles has
been allocated to a particular processor, and their associated
properties (mass, charge, velocity etc.) have been fetched from
their original location, one can immediately begin to construct
the local trees. This can be done very efficiently because the
particle keys implicitly contain the necessary information on
all their ancestor nodes up to the root. The parent of a particle
or twig-node is simply found by a 3-bit shift operation:

kparent = RIGHTSHIFT(k,3) (2)

Likewise, if a node’s children are numbered from 0 to 7 (in
a 3D oct-tree), their keys can be obtained by the inverse
operation:

kchild = LEFTSHIFT(k,3) OR child(0-7), (3)

The local sorted list of particle keys would thus provide a
natural starting point for determining their parent nodes if we



knew how they were distributed. In a dynamic application we
cannot assume anything about their distribution, however, so
instead we start from the highest (coarsest) level and work
down to the leaves. As in a sequential algorithm [10], all
particles are initially attached to the root, in this case a cube
encompassing the whole simulation region. Next, the region
is subdivided into 8 sub-boxes, and the particles re-attached
accordingly. A sub-box containing exactly one particle is
defined as a leaf; a box with 2 or more constitutes a twig
and empty boxes are discarded. This procedure is continued
at the next highest level until each particle sits in its own box.
For highly clustered distributions, it may become necessary to
relax this requirement, otherwise simulations with more than a
few million particles may result in identical key assignments.

Each new leaf or twig node created this way is added to
the local hash-table via the same hash function (1) as the
particles. Collisions are again dealt with via a simple linked
list. In principle this function can be refined to improve the
distribution of hash-table addresses in memory space: the
sharing of keys across a number of processors keeps the
collision count down to tolerable levels.

Global branch nodes: At their coarsest level, the local trees
will contain ‘incomplete’ twig nodes; that is, nodes which
cross domain boundaries. Information from neighbouring do-
mains is therefore needed to complete them. To facilitate
the exchange of information (and later multipole moments)
between processors, a set of local ‘branch’ nodes is defined
first, comprising the minimum number of complete twig and
leaf nodes covering the whole local domain—Fig.2.

Fig. 2. Branch nodes belonging to 4 processor domains.

This set of branch nodes is then broadcast to all other
processors, so that each one subsequently knows where to
request any missing non-local particle or multipole informa-
tion. For example, a branch’s child nodes can immediately
be found from a byte code stored with the hash-table entry,
the first 8 bits of which declare which children exist at the
next refinement level. Applying the operation (3) yields each
(still non-local) child key. A branch’s hash-entry will also
contain the total number of particles contained beneath it, so
that the top level nodes above can now be filled in up to the
root. At this point the local trees comprise 3 types of node:

i) twig or leaf nodes covering the local domain, ii) branch
nodes and iii) top level twig nodes, each covering the whole
simulation region—Fig.3. Leaf node entries contain a pointer
to the actual particle coordinates, charge and mass, as well
as a globally unique label for tracking purposes. Twig nodes,
including the special branch nodes, contain pointers to the
multipole moments of their associated charge distributions,
together with some flags indicating the status of non-local
child nodes (in particular, whether a local copy already exists).

a)

b)

Fig. 3. Local trees for a) processor 0 and b) processor 2 prior to tree-
walk. The shaded boxes represent the branch nodes gathered from all remote
processors.

Construction of multipole moments: Once the basic tree
structure is in place, it is a straightforward matter to ac-
cumulate multipole moments for each node from the leaves
up. Once again, this procedure is considerably simplified by
sorting the keys for the twig-nodes contained within the list
of local branch nodes. Twig nodes with the highest keys will,
by definition, have the highest refinement levels:

level =
log(key)

log 8
(4)

This means that multipole moments at higher levels can be
successively shifted up to their parent levels using simple
displacement vectors as described in [10]. This procedure is
continued by working through the sorted list of twigs in reverse
order up to the local branch nodes, which then contain the
complete multipole information for the local domain. This
information is then broadcast to all other processors, so that
the remaining top-level nodes can be filled in using the above



Fig. 4. Parallel tree-walk algorithm for determining interaction lists for a
batch of particles.

while any defer list still > 0 do
while any particle not finished walk do

find next node on particles’ tree-walks
if MAC OK then

put node on interaction list
walk-key = next-node

else if MAC not OK for local node then
subdivide: walk-key = first-child

else if MAC not OK for non-local node then
walk-key = next-node
put particle on ‘defer’ list
put node on request list

end if
remove finished particles from walk list

end while
gather request lists for non-local nodes from all proces-
sors and discard duplicates
for all remote processors do

initiate receive buffer for incoming child data
send off requests for remote child data

end for
for all remote processors do

test for incoming request
package and ship back child multipole data to proces-
sor that requested it

end for
for all requests do

if data has arrived for requested node then
create new hash-table entries for each child

end if
end for
copy particle defer lists to new walk lists for next pass
through tree

end while

shifting rules. At the end of this procedure, each processor
has the complete multipole expansion for the entire simulation
region contained in the root node.

Tree traversal: building interaction lists : By far the most
important and algorithmically demanding part of a parallel tree
code is the tree-traversal, which in the present asynchronous
implementation requests multipole information ‘on the fly’
from non-local processor domains. Rather than performing
complete traversals for one particle at a time, as many ‘simul-
taneous’ traversals are made as possible, thus minimizing the
duplication incurred when the same non-local multipole node
is requested many times and ii) maximising the communica-
tion bandwidth by accumulating many nodes before shipment.
In practice, this means creating interaction lists for batches of
200–1000 particles at a time before actually computing their
forces. The routine tree_walk, which finds the interaction
list for each batch has the structure depicted in Fig. 4.

In the first half of this routine, traversals are made through

the local tree using the familiar divide-and-conquer strategy
common to sequential tree codes [17]. The multipole ac-
ceptance criterion (MAC) determines whether to accept or
subdivide local nodes as usual, but also provides for a third
possibility: the subdivision of a non-local node for which child
data is not yet available. This is then placed on a special
‘request list’ to be processed in the 2nd half of the routine
when all particles have completed their traversals as far as they
can with the available node data. Each processor then compiles
a lists of nodes it needs child data from, and sends them to
the owners of the parent nodes. In the first pass, these will just
be the branch nodes. On receipt of a request list, a processor
packages and ships back the multipole data for the children.
The use of non-blocking SENDS and RECEIVES for the
multipole information allows some overlap of communication
with the creation of new hash-table entries locally. At the end
of all the traversals, each processor’s local tree contains all
the nodes required to compute the forces on its own particles.
The nodes fetched during the traversals actually take up most
of the space in the local hash-table, as Fig. 5 illustrates.

a)

b)

Fig. 5. Tree for processor 1, the domain in bottom right quadrant: a) before
and b) after traversals for all locally held particles.

Force summation : Once an interaction list has been found
for a particle, it is a straightforward task to compute its force
and/or potential. Separation of the actual force sum from
the tree traversal has the advantage that this floating-point-
intensive routine can be hardware-optimised. Also, the physics
and algorithm are kept naturally apart, so that additional forces
(for example, short-range components or magnetic fields)



and/or boundary conditions (for example, corrections from a
periodic Ewald summation) can be added with relative ease.
In the present implementation, forces are computed for each
batch of interaction lists returned from the tree-walk routine.
One subtlety which arises here is that even if overall load-
balancing has been arranged during the domain decomposition,
it is not necessarily guaranteed for each batch of particles
(which may comprise only 1/100 of the total number on each
processor). To redress this problem, the batch size Nb for each
processor is determined individually, so that the integral

Nb∑
p=1

Nint(p) (5)

is the same, and each processor computes the same number
of interaction pairs during each pass.

III. ALGORITHM SCALING AND PERFORMANCE

Initialise particle properties ri, vi, qi, mi N/P
Key construction: (xi, yi, zi)→ ki N/P
Sort keys: k1, k2, ...kN N/P log N
Domain decomp.: k1, ..kn; kn+1, ..k2n; ...; kN−n...kN N/P
Construct branch nodes P log N/P
Fill in top level local tree nodes log P
Build multipole moments log N/P
Construct interaction lists (tree traversal) N/P log N
Compute forces and potential N/P log N
Update particle velocities and positions N/P

TABLE I
ALGORITHMIC SCALING OF MAJOR ROUTINES IN PEPC. THE SYMBOLS N
AND P REPRESENT THE TOTAL NUMBER OF PARTICLES AND PROCESSORS

RESPECTIVELY, AND n = N/P .

The overall algorithm is depicted together with the theo-
retical scaling of each major routine in Table I. We see that
in principle, all of the above routines can be performed in
parallel, and thus require a computational effort O(N/P ), give
or take a slowly varying logarithmic factor. Single-timestep
benchmarks with this new code broadly confirm the theoretical
scalings indicated in Table I. As expected, most of the time
is spent in the tree-traversal and force-summation routines:
the total overhead incurred by the tree construction (which
includes the steps 2.3, 2.3 and 2.4 described previously) is
around 3%, although this figure excludes tree-nodes copied
locally during the traversal—Table II.

The PEPC code is written in a generic fashion without the
usage of external libraries. This results in excellent portabil-
ity. In the PRACE benchmarking framework PEPC was run
on four different computer architectures, namely: IBM Blue
Gene/P (jugene), IBM Power6 (huygens), Cray XT5 (louhi),
Intel Nehalem (juropa). As a test case we used 5 ·107 particles
and a cubic, homogeneous initial distribution. The scaling
behavior is shown in figure 6, where the time needed for one
inner loop step is shown as a function of the peak performance
of the used partition. As shown, PEPC is able to utilize the

Routine/ No. CPUs 8 16 64

Domain decomposition 0.2 0.24 0.33
Tree building 2.3 2.3 2.7
Tree traversal 32.9 36.1 40.8
Force summation 64.4 61.2 55.7

TABLE II
BREAKDOWN OF RELATIVE COMPUTATIONAL EFFORT (PERCENTAGE OF
WALL-CLOCK TIME SPENT IN EACH ROUTINE) IN THE PARALLEL TREE

CODE FOR A TEST CASE WITH 100K PARTICLES AND 8, 16 AND 64
PROCESSORS RESPECTIVELY ON A PC CLUSTER

given partition performance independently of the architecture.
Only the Intel Nehalem architecture shows a significantly
better performance. PEPC’s overall scaling behavior is also
impressive for a tree code, although the current version is only
able to use up to approximately 8192 cores. But with these
the code is capable of simulating more than 108 particles.

Three different areas have been identified as challenges
for further development of the code: The inevitable need
for global communication in Barnes-Hut tree codes, a strong
memory dependency of the number of cores and a reliable
load balancing scheme [18]. These problems have to be well
analysed in order to make resonable use of PEPC on larger
partitions. While the second topic is a question of data struc-
ture and organisation the two others focus on communication
patterns and their impact on the performance. It is clear that
although the tree code is an intrinsically adaptive algorithm
which performs very well even with very inhomogeneuous
particle distributions, its performance depends strongly on a
sophisticated load balancing scheme, which is closely linked
to the domain decomposition method. The need for non-local
communication is an inevitable consequence of the elliptic
nature of the Poisson equation.
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Fig. 6. Performance of PEPC on various HPC architectures, normalised to
the theoretical peak performance of multi-core partition.

IV. COLLISIONAL MODELLING WITH MESH-FREE CODES

An earlier incarnation of this code was used to perform
molecular dynamics (MD) calculations of nonlinear inverse
Bremsstrahlung absorption in strongly coupled plasmas [1],



[17]. In the present context, PEPC is used in the macroscopic
sense, using quasi-particles to trace the dynamics of phase-
space elements just as in PIC simulation. The analogy with
PIC stops there, however: first, the present tree code does
away with both spatial grid completely; second, both electron-
ion and electron-electron collisions can be implicitly included
in a natural, adjustable manner, drawing on the theoretical
framework for ‘finite-size-particle-’ (FSP) simulation set out
30 years ago by Langdon, Okuda and Birdsall [19], [20].

According to this theory, the collisionality of a plasma
comprising finite-sized clouds with radius ε is typically re-
duced by orders of magnitude compared to a ‘real’ plasma
comprising point particles, so that the number of particles
in a Debye sphere, ND = 4π

3 nλ
3
D, is effectively replaced

by the parameter Nc = 4π
3 nε

3, where n, and λD are the
number density and Debye length respectively. Okuda and
Birdsall [20] expressed this attenuation effect quantitatively
by evaluating the scattering cross-section σcloud for charge
clouds numerically, and then plotting the ratio σcloud/σpoint as
a function of the cloud radius and ND.

In the large cloud limit, ε/λD � 1 (the regime of interest
for the present study), the curves in Fig. 7 of Ref. [20] can be
fitted to better than 20% by a conveniently simple expression:

σcloud

σpoint
=

1
3 ln Λ

(
λD
ε

)2

, (6)

where Λ = 9ND. Applying the usual definition ν = nvσ, one
can thus write down an effective collision frequency for cloud
charges:

νc
ωp
' Z

30ND

(
λD
ε

)2

=
Z

30Nc

(
ε

λD

)
. (7)

This expression is also displayed graphically in Fig. 7. In ob-
taining this fit, we have also made use of the usual expression
for point particles [21], [22]:

νei
ωp

=
1
3

( π
32

)1/2 Z ln Λ
ND

' Z ln Λ
10ND

, (8)

where ωp is the plasma frequency.
In PIC codes the particle size is usually equivalent to the

grid spacing ∆, which must be kept ≤ λD to avoid alias-
ing instabilities, usually manifesting themselves as numerical
heating [23]. To map the particle densities smoothly onto the
grid, it is also desirable to have as many particles per cell
as possible, or Nc � 1 (although 3-dimensional simulations
are often performed with as few as 2–3 electrons/ions per
cell). This combination means that PIC codes are typically
operated in the bottom-left, ‘collisionless’ corner of Fig. 7,
with νc/ωp ≤ 10−2.

By contrast, the gridless FSP approach gives us the freedom
to set up a simulation within a much larger area of the param-
eter space depicted in Fig. 7. The most sensitive parameter
here is Nc, or equivalently ε/a, the ratio of the cloud size
to the average interparticle spacing. Even at modest densities,
adjusting ε/a enables us to emulate both hot, collisionless
plasmas where PIC simulation is valid; or the cold, collisional
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Fig. 7. (color online) Normalized electron-ion collision frequency for finite-
sized particles as a function of cloud radius for various values of Nc.

state normally treated with hydrodynamic or Fokker-Planck
modelling. Choosing a large ε/λD (or low temperature) will
wash out details on the cold electron Debye-length scale (such
as Langmuir wave dispersion), but this is of minor concern for
problems where the physics is dominated by large (micron-)
scale charge separation effects.

In practical terms, the finite cloud size is introduced via a
smoothed Coulomb potential, which in PEPC takes the form:

Φ(r) =
qr

(r2 + ε2)1/2
, (9)

with the corresponding equation of motion for each particle i:

mi
dui
dt

=
1
3
qi
∑
i 6=j

qjrij
(r2ij + ε2)3/2

+ qiE
p(ri), (10)

where rij = ri − rj is the separation between particles i
and j; ui = γvi is its proper velocity with relativistic factor
γ = (1 + |u|2/c2)1/2; Ep is an external field arising from the
laser (see Sec. III).

In Eqs. 9 and 10 the variables t, r, v, q,m,Φ and E have
been normalized to 1/ωp, c/ωp, Npe,Npme,mec

2/e and
meωpc/e respectively, where

Np =
4π
3
ne

(
c

ωp

)3

(11)

is a dimensionless constant representing the number of phys-
ical charges contained within a simulation particle.

V. NUMERICAL PLASMA PREPARATION

To set up a FSP simulation with PEPC, the electrons
and ions are first brought into a homogeneous, equilibrium
configuration according to the target geometry, density n0 and
electron temperature Te [5]. For example, a foil target might



be set up with dimensions LxLyLz = 5 × 12 × 12 µm3,
comprising 3.2× 106 electrons and ions, giving a = 0.7c/ωp.
The electron and ion densities would be set to ni = ne = n0 =
(4 → 10) nc, where nc is the critical density corresponding
to the laser frequency ω, related by: ω2 = 4πe2nc/me, where
e and me are the electronic charge and mass respectively.
The ions are given a charge Z = 1, mass mi = 1836 me

and initial temperature Ti = 0. Unlike in PIC codes, the
electron temperature is not artificially constrained to some
value (typically several keV) determined by the mesh size,
but can be varied from a few 10s of eV upwards to control
the initial target resistivity. For lower temperatures, however,
the timestep (typically 0.1− 0.5 ω−1

p ) is generally reduced in
order to resolve the collision dynamics and ensure reasonable
energy conservation.

VI. LASER-PROTON ACCELERATION

One of the hot topics of laser-matter interactions is ion ac-
celeration. Current experiments have made dramatic progress
in producing multi-MeV beams of light ions and protons which
may eventually be used in tumor therapy. Before this goal
can be realised however, a number of challenges have to be
overcome regarding the beam quality. Simulations are essential
here for exploring novel target configurations in order to
provide experimental guidance. Microstructured targets have
been proposed to reduce the ion beam energy bandwidth and
emittance. Our simulations show that a pure proton microdot
target does not by itself result in a quasimonoenergetic proton
beam: in face, such a beam can only be produced with a
very lightly doped target, in qualitative agreement with one-
dimensional theory [7] – Fig.8 The simulations suggest that
beam quality in current experiments [24] could be dramati-
cally improved by choosing microdot compositions with a 5–
10 times lower proton fraction. Further investigations have fur-
ther quantified these findings, setting lower limits on the useful
proton fraction, beyond which an energy filtering scheme
becomes more effective [25].

VII. HEATING AND ION ACCELERATION IN
NANOSTRUCTURED FOILS

Nanostructure surfaces are especially promising as highly
absorbing targets for high-peak-power sub-picosecond laser-
matter interaction. Efficient hot electron, fast ion, and ther-
monuclear neutron production with moderate laser intensity
have already been reported, but theoretical investigations on
the use of porous targets for these purposes are still scarce. In
a recent study using PEPC, a new phenomenon of Coulomb
implosion has been identified [8]. The implosion effect is
caused by hot electrons circulating inside the shells, drawing
ions inwards, where they eventually meet in the centre – Fig. 9.

Under the same irradiation conditions, a single shell simply
blows apart, and does not exhibit the symmetric collapse
observed in the foam lattice simulation here. In this case, some
hot electrons circulate inside the shell, but most are dragged
outside, leading to a net force on the ions directed radially

a) b)

Fig. 8. Laser acceleration of proton microdot (central feature). Energy spread
of the protons can be reduced by decreasing the relative proton density – here
50% (a) and 5% (b) respectively.

outwards. (A fully stripped ion shell will, by Gauss’ Law, have
zero electric field inside). This implies that the laser heating is
strongly modified by the regular lattice structure, which in turn
radically alters the ion dynamics. These findings have recently
been corroborated by 2D PIC simulations in which the electron
heating and laser propagation is treated self-consistently with
a fully electromagnetic field solver – Fig. 10.

Should this nano-implosion phenomenon scale to higher,
relativistic intensities, it might also have potential as a compact
neutron source. A recent comparison between atomic clusters
and aerogels [26] suggests that the latter are capable of
yielding 10 times as many neutrons for the same laser energy
because of the higher kinetic energy imparted to deuterons
contained within the aerogel lattice. The present study indi-
cates that density enhancements created by heating regular
porous lattice structures should result in even higher neutron
yields.

VIII. MESH-FREE MODELLING OF TOKAMAK EDGE
PHYSICS

The group ‘plasma edge simulations for fusion plasmas’ in
IEF-4 (Prof. Reiter) develops and applies 2- and 3-dimensional
computer simulation codes for interpretative and predictive
studies of physics close to the plasma container wall (vacuum
chamber). This domain is characterised by a complex



a)

b)

Fig. 9. Coulomb implosion of thin shells initially arranged in a bcc foam
matrix with ionized electrons confined to the inner shell surfaces – a).
Acceleration of ions off the inner surfaces leads to uniform convergence and
peaked ion temperatures (hot spots) at the shell centres – b).

interaction of plasma-chemical and turbulent processes. The
models contain both empirical and first-principles based
modules. The long term goal of model development is step
by step replacement of the ad hoc by texitab initio models,
aided by increasing HPC resources based on the parallel
computing paradigm. The self-consistent electrical field,
obtained from the position of charged test particles, or, in
fluid approximations, of charged fluid parcels, is one such
component.
The mesh-free method offered by the tree code PEPC-B
developed at JSC is a promising candidate either to provide
self-consistent fields in tandem with existing modelling tools,
or as a stand-alone (radiation-free) code for fusion plasma
simulations. Currently this is being jointly developed by JSC
and IEF-4 to model plasma edge phenomena such as the
potentially catastrophic edge-localised modes (ELMs).

In a first step interfaces have been developed to provide
PEPC-B with fusion relevant magnetic fields. For this purpose
equilibria fields similar to those used in the transport code
EIRENE [27] have been introduced. To define the external
magnetic field PEPC-B assigns vector data according to a
2d triangular mesh (VIII), assuming toroidal symmetry in the
tokamak. This feature in principle enables PEPC-B to run full
tokamak core simulations. Next, the field data provided from

a)

b)

Fig. 10. 2D PIC simulation of foam array irradiated by high intensity pulse
(incident from the bottom) with similar parameters to those in the tree-code
simulations. a) Electron density at a few fs, b) ion density after 100 fs.

Fig. 11. Example of a triangular mesh fitted in the vessel of the
MAST-tokamak.

external sources have to be smoothed and adjusted to guarantee
div( ~B) = 0.
A further addition is the inclusion of a collision module
based on the Monte-Carlo model of Takizuka and Abe [28].
This permits collisions between the injected tracer particles
and the plasma backround to be taken into account. An
example application is the modelling of impurities such as
C+ ions occurring in fusion plasmas after sputtering or gas
puff scenarios in a realistic plasma environment. A current
priority is to simulate gas puff experiments recently performed
on TEXTOR and to see how these findings scale to larger
machines such as ITER.

IX. DARWIN MODEL: ROUTE TO GRIDLESS
MAGNETOINDUCTIVE PLASMA SIMULATION

A strategic goal with this project is to extend the fast sum-
mation algorithm deployed in PEPC to include self-generated



magnetic fields. This ‘Darwin’ or magnetoinductive approach
has been pursued within the particle-in-cell paradigm for some
time [29]. A mesh-free Darwin model would open up a large
range of new applications of mesh-free plasma simulation, not
least in the tokamak modelling scenarios described above, and
also in particle beam transport in dense plasmas. The model
incorporates slowly varying mag- netic fields by neglecting the
transversal part of displacement current in Ampère’s law. This
transforms the hyperbolic equation system into a set of elliptic
equations, which can again by solved by a fast summation
algorithm.

φi(ri) =
∑
j 6=i

qj
|ri − rj |

El
i(ri) =

∑ qjrij
r3ij

Ai(ri) =
1
2c

∑ qjvj
rij

+
1
2c

∑ (qjvj · rij)rij
r3ij

(12)

Bi(ri) = ∇×Ai =
1
c

∑ qjvj×rij
r3ij

Et
i(ri) = − 1

2c2
∑ qj v̇j

rij
− 1

2c2
∑ (qj v̇j · rij)rij

r3ij

On the other hand, numerical difficulties arising from this
approximation have already been reported by previous authors
who implemented the Darwin model within PIC or Vlasov
codes. The standard scheme known from the fully electro-
magnetic codes used for the calculation of time derivative
of the vector potential causes a violent numerical instability
destroying the whole run in a few time-steps. One of the
possible solutions to this problem is to express the quantities
in terms of Hamiltonian generalized variables, which avoids
the time derivative of the vector potential in the the equation
of motion.

Our magnetoinductive model employs a multipole expan-
sion of the Darwin field equation, modified to account for
finite-sized particles and evaluated within the PEPC tree
algorithm framework. First tests of this model have been made
on charged particle beam evolution in vacuum. Details will be
given in a separate publication.

X. CONCLUSION

To summarize, we have described recent activities concern-
ing mesh-free plasma modelling at JSC. Most of this work
involves application and further development of the mesh-
free code PEPC, but recently we have also started using fully
electromagnetic PIC codes to model laser-plasma interaction
processes. Future work will include rigorous comparisons
between the PIC and mesh-free approaches, in order to more

clearly identify the advantages of the latter. The mesh-free
Darwin or magnetoinductive approach offers completely new
possibilities in many areas of plama physics from magnetic
fusion to space physics. A major challenge for the usage
of the mesh-free technique on contemporary HPC systems
is to improve its parallel scalability. Efforts are underway to
improve the current limit of 8192 cores on BG/P to at least
64k cores.
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