
M
itg

lie
d

de
rH

el
m

ho
ltz

-G
em

ei
ns

ch
af

t

Introduction to
Particle-in-Cell Simulations
Plasma Physics Course

18th and 25th October 2012 Paul Gibbon

Outline

Lecture 4: Particle-in-Cell Simulation Basics

Lecture 5: Hands-on Tutorial

2 13

M
itg

lie
d

de
rH

el
m

ho
ltz

-G
em

ei
ns

ch
af

t

Introduction to
Particle-in-Cell Simulations
Part I: Getting to know an electrostatic
Particle-in-Cell code

18th and 25th October 2012 Paul Gibbon

Lecture 2: Getting to know an electrostatic
Particle-in-Cell code

Getting to know an electrostatic Particle-in-Cell code 4 13

PIC simulation

The particle-in-cell code currently represents one of the most
important plasma simulation tools. It is particularly suited to the
study of kinetic or non-Maxwellian effects. The simplest variation
of this technique is a ‘1D1V’-configuration: 1 space coordinate
plus 1 velocity, the numerical behavior of which was first
considered by John M. Dawson, one of the pioneers of kinetic
plasma simulation, some forty years ago. Advances in
computing power have enabled the PIC method to be extended
to fully electromagnetic, 3D3V simulation. For tutorial purposes,
however, we stick to the simplest possible reduced geometry for
the sample PIC codes offered here, which offer both an
apprenticeship in ‘professional’ plasma simulation, as well as
plenty of insight into the behavior of laser-produced plasmas.

Getting to know an electrostatic Particle-in-Cell code The PIC code ESPIC 5 13

Difference equations

The heart of an electrostatic code is based on a cyclic iteration
of the following difference equations:

Particle pusher: v
n+ 1

2
i = v

n− 1
2

i +
qi

mi
En

i ∆t ,

xn+1
i = xn

i + v
n+ 1

2
i ∆t . (1)

Density gather: ρn+1
j =

∑
i

qiS(xi − xj),

S = 1−
| xi − xj |

∆x
. (2)

Field integration: En+1
j+ 1

2
= En+1

j− 1
2

+ ρn+1
j ∆x . (3)

Getting to know an electrostatic Particle-in-Cell code Difference equations 6 13

Code structure

The routines for the above three steps — PUSH, DENSITY and
FIELD, respectively — can be found in the source directory in the
corresponding files. The control routine at the top of the code,
MAIN – see file espic.c/f90) – calls each of these routines in
turn, as well as some initialization routines (INIT, LOADX, LOADV)
and diagnostic routines (DIAGNOSTICS, PLOTS, HISTORIES). All
main variables and storage arrays are described in the
header-file es.h.
Normalization:

t → ωpt ; x → ωpx/c; v → v/c
E → eE/mωpc; φ→ eφ/mc2; ne,i → ne,i/n0

Getting to know an electrostatic Particle-in-Cell code Difference equations 7 13

Prerequisites

Download site:
https://trac.version.fz-juelich.de/bops/wiki/

Tarball: espic.tar.gz or espic.zip

Source code (eg C-version): C/ *.c, es.h, makefile

Compiler: GNU’s gcc or gfortran
Graphics:

various GLE scripts
Gnuplot-script for multiplot-graphics: multiplot.gnu
your favourite plot program!

Getting to know an electrostatic Particle-in-Cell code Prerequisites 8 13

https://trac.version.fz-juelich.de/bops/wiki/

Installation

Linux and MAC users:

Unpack the tar file (name may differ) with:
tar xvfz espic.tar.gz

and ‘cd’ to the installation directory.

Windows users

1 First obtain and install MinGW from
http://sourceforge.net/projects/mingw/files/.
During the Setup check the boxes for compiler(s) you need,
plus the MinGW Developer ToolKit This creates a basic Unix
environment emulator under Windows.

2 Download and unpack the espic.zip file with an archiving tool.
Put this somewhere in your ’home’ directory.

3 Open a MinGW terminal/shell and ‘cd’ to the ESPIC directory.
Getting to know an electrostatic Particle-in-Cell code Installation 9 13

Installation

The directory structure resulting from unpacking the archive file
(zip or tar) should look something like this:
C/ ... C source code
f90/ ... fortran source code
graphics/ ... graphics scripts
doc/ ... tutorial worksheets

To compile:

Go to the C/ source directory, and edit the Makefile: adjust and
tune the flags to match your machine type (FC=gcc). Then do:

make

Getting to know an electrostatic Particle-in-Cell code Installation 10 13

http://sourceforge.net/projects/mingw/files/

Running the code

The purpose of the present exercises is to gain first-hand
experience in using an electrostatic particle-in-cell code.
Beginners are advised to start with the ‘bare-bones’ version, and
build in their own diagnostics as needed. A more extensive
‘tutor’ version is also provided to give hints in case you get stuck,
and for those wishing to move on to the more advanced projects.

The main code variables and input parameters are described in
the file es.h. Their initial values can be changed by editing
init.c and recompiling with make.

To launch code from the source directory, just do:
./espic

This should generate some output onto the terminal and
plain-text format data files with a suffix .data. These can be
inspected with an editor or plotting program.

Getting to know an electrostatic Particle-in-Cell code Installation 11 13

Project I: Thermal equilibrium and numerical heating

1 In its present state the code uses periodic boundary
conditions (bc-particle =1): Particles which cross a
simulation boundary (left or right) are fed back in at the
opposite side with their velocity unchanged (see routine
BOUNDARIES). For self-consistency, all field quantities must
satisfy: f (x ± L) = f (x). Using this periodic system, try
out a simulation with the following parameters (edit file
init.c):

grid-length=10 vte=0.1 rho0=1.0
dt=0.2 nx=100 ne=5000
ntrun=500 ihist=5 igraph=250

If you change any parameter, you will need to recompile
with make or possibly make clean; make.

2 Run the code and examine the output data with a graphics
program (e.g.: gnuplot, xmgr, gle). The datafiles should
have names like densityN.data, fieldN.data, etc.,
where N is the snapshot number.

3 The file hist.data contains the time-history of the total
kinetic energy of the plasma electrons Ukin. In order to
check the energy conservation of the system, we also
need the potential energy, given by: 1/2

∫ L
0 E(x)2dx .

Build this additional diagnostic into routine HISTORIES, so
that the output file hist.data contains 3 energies: (Ukin,
Upot, Utot=Ukin+Upot).

4 Using the energy conservation diagnostic, experiment with
different timesteps dt. Determine the maximum value for
which energy conservation is maintained within, say 10%.

5 Two further essential diagnostics are the particle phase
space (v, x) and velocity distribution f (vx), outputs for
which are missing from the code in its initial skeletal form.
The first of these can be naturally incorporated in routine
PLOTS; the distribution function is best computed in a new,
separate routine.

6 Now repeat the simulation above with fewer grid points,
e.g. nx=10, and compare the total energies, phase space
and velocity distributions of the two simulations. What do
you notice? In the second case, the plasma Debye-length,
λD = vte/ωp , is not resolved by the grid; an error which
leads to the so-called ‘aliasing’ instability (mixing of plasma
modes k , k + n2π/L – see Birdsall & Langdon, pp
175–181). Try experimenting further with the grid
resolution: how small must ∆x = L/Nx be to avoid
numerical heating?

Project II: Nonlinear plasma waves

1 A longitudinal plasma wave manifests itself as a
disturbance in the electron density: ne = n0 + n1(x, t).
We can excite such a wave numerically by displacing the
initial positions of the particles. If the density perturbation
at t = 0 is to have the form n1 = A sin kx , one can show
(Birdsall & Langdon, Section 5-2) that the particles need to
be displaced by an amount:

δx ≡ x(t) − x0 =
A

n0k
cos kx.

2 Make the necessary modifications to the code (for example
in routine loadx) in order to initialize such a plasma wave
structure.
Suggested parameters are as follows (routine init.c):

grid-length=2*pi A=0.1, k=1 vte=0.05
rho0=1.0 dt=0.2 nx=100
ne=2000 ntrun=150 igraph=pi/dt

Note that for large amplitudes A, some particles may be
displaced across the simulation boundary, so an additional
call to BOUNDARIES after LOADX may be necessary to
avoid ‘losing’ particles at the edges.

3 How can the statistics or signal:noise ratio in the electron
density ne be improved?

4 (optional) Compare the wave amplitudes and relative
phases n1, E1, φ1 with those expected from linear theory.

5 How well does the code conserve energy? Examine ∆Utot
as a function of ∆t . (For the energy diagnostics, see
Project I, step 3.)

6 Now try increasing the wave amplitude, e.g.: A > 0.2.
What happens to the waveforms of density and field? At
later times (a few plasma periods, depending on the
plasma parameters), one should be able observe some
significant wave-particle interaction (trapping and/or wave
breaking).

7 Investigate this process further by varying A, vte, rho0
etc. Hint: it is particularly helpful here to look at the particle
phase space (v, x) and velocity distribution f (vx) (see
Project I, step 5 to build in the diagnostic).

8 For very large amplitudes, the electron velocities will
eventually become relativistic (v ∼ c). Since there are no
magnetic fields in the model, this can easily be
accomodated in PUSH by substituting the proper velocity,
u = γv for v . Care should be taken, however, to
incorporate this relativistic upgrade in the code diagnostics,
such as the kinetic energy Ukin = mc2(γ − 1), phase
space (px , x), and distribution functions f (p).

	Tutorial
	The PIC code ESPIC
	Difference equations
	Prerequisites
	Installation
	Project I: Thermal equilibrium
	Project II: Nonlinear plasma waves

